More Geometric Data
Structures

Windowing

* Consider a mapping application (Waze for example)
* The entire map contains huge amount of objects.

* However, at any given time, we need to display a small amount, just
the object in our screen.

4 i
7 = |f(/
. - ! b __,_‘}EEI “’EH
W 4\\ I -\r;g:_fcx:r\:'k_ -/L_).f ’_}‘\tg Wﬁﬂ | ??.J
- |] — =, O . &
A e D BN U\ e v 02 N\
— ey = O iy
: W
- Y= & ¥/
\ | m A Sy
~ ! ~ .._,_l_if I\ P D\
\\\ ST /“’L”“j{: _.1":_\ \ Ifbiﬁj}*
i NN AN) \\ 5
LS ‘; ¢ \ %“{ELJKJ
\ Ny, 7
! | L,A,a-::-‘!";/

Windowing

* We have seen how to find points in a region, but what about other objects?
* We will begin with a simpler case, only axis-alighed segments.
* We can handle segment with endpoints inside the window easily.

* How can we handle segments that cut the window with no end point inside
it? !

Interval Trees

* Lets simplify the problem:

* Given a set of horizontal intervals, find the set of intervals that contain the
point x.

* Trivial solution: O(n), surely we can do better.
e Can we use a tree? When does one interval is smaller than another?

Interval Trees

* |dea: the root will contain the intervals which are roughly in the middle.
* Formally, let x,,,;4 be the median of all interval end points.
* In the root we will have all the intervals intersecting x,,,;4

* To the left, a sub tree with all the
intervals strictly to the left of x,,,;4.

* The same to the right.

Interval Trees

* Problem: how do we find which intervals in a node intersects x?
* Maybe all the intervals intersects x,,,;4, thus all are in the same node.
* Do we have the same problem again?

* No, we know all the intervals intersects x,,,;4.

* In the example we know that all the end points are
to the right of x, since x is to the left of x,,,;4.

* Knowing this, we can solve the problem with two listg
in the node, one for each direction. start voints | 7 7 LA\

End points 1 > / > / > \

Interval Trees

* What is the complexity of constructing an interval tree?

* We need to sort the intervals - O(nlogn). :
* Once for all the tree.

* Finding the median takes - O(n).

* Constructing the root node - O (n). |

] n X ! Xmid
* Constructing the left and right subtrees - 2T (5) .

* Since we split by the median there are at most g intervals in each tree.

e T(n) = 2T (g) + 0(n) =0(nlogn).

Interval Trees

* Query — find the relevant nodes (as in a BST), and in each node report the
intersecting intervals.

* Query time—-0(logn + k).

 Where k is the number of reported intervals.

* Space complexity — 0(n).

I
X " Xmid

Interval Trees

e Until now we asked for the intervals intersecting a line.

* But what if instead of a line we have a segment? :

 We look for start points in the area [—o0, x| X [y, y'].

* We know how to handle points:

* In each node we will have 2d-Range trees instead of lists. y |
- " Amid

* The query time in the Range trees is O(logn + k),
so O(log? n +k) in total.

* Space complexity O(nlogn).

Priority Search Trees

e Recall our last problem:
* Given a set of points find those inside [—o0, x] X [y, y'].
* The area is not bounded, can we do better than 2d-Range tree?

* We have seen that without the y range we can simply use lists and
report the points starting from the minimum one until reaching x.

* This means that we don’t need to be able to search on the x-axis.

* What data structure will allow us to have the y data searchable and
the x data traverseable from the minimum value until x?

Priority Search Trees

* Reminder - Min-Heap: \/\lj
V11 >

O
| | ::
20 >“_:f

* Can we find all the elements smaller than some value x in O(k) time?

* Yes, start in the root, and traverse each sub tree with root smaller
than x.

Priority Search Trees

e Our full data structure will be a hybrid between a search tree and a
heap:

]

II. - f;'ﬁ
| pJH\/__ | ®
q”iiﬁ o2
- = P1
I'RH‘FJﬁ | | ®
— . P4
~ =" P6
\P3) L
R‘/\/—a | P3
© .
A |

* Heap according to the x axis, and all the elements in the left sub tree
are smaller than the elements in the right sub tree (but not
necessarily smaller than the root).

Priority Search Trees

* Using this data structure we can look for subtrees fully contained in
|y, v'], and inside them look for all the elements inside [—oo, x]
according to the heap.

* In order to search for y and y' store the min/max
in each sub tree in each node.

* We also need to check all the nodes in the path.

* Query complexity — O(logn + k).
e Without fractional cascading.

* Space complexity — 0(n).

* Reducing the interval tree space complexity
to O(n).

Non Axis-Aligned segments?

 What about general segments, that is, not axis-aligned?
* We'll see next week.

